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A semiempirical MO method based on localized fragment orbitals has been 
developed, which is particularly suited for the construction of orbital corre- 
lation diagrams for the discussion of the electronic structure of complex 
molecules in terms of fragments and their interactions. The method allows for 
the inclusion of experimental ionization potentials and electron affinities of 
the fragments within the calculation of the Fock matrix elements and may thus 
form the basis of an interpretation of photoelectron spectra, comparable to 
the interpretation of UV spectra by means of the MIM method of Longuet- 
Higgins and Murrell. Several levels of approximation are discussed using the 
acrolein molecule as an example. 
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1. Introduction 

The interpretation of complicated wave functions in a way which is illuminating 
and suggestive to a chemist requires concepts such as localized pairs or groups of 
electrons and which stresses additivity and transferability of the properties of 
individual bonds or distinct parts or fragments of complex systems. Thus a 
considerable effort has been devoted to the interpretation of wave functions of 
molecules in terms of localized orbitals [ 1-7] and to building up the wave function 
by starting from wave functions associated with its pieces or fragments [8-11]. 
The transferability of localized orbitals has been studied in detail [2, 12-14], and 
several methods have been designed to save computer time by making use of the 
transferability of results or Fock-matrix elements from calculations on smaller 
molecules [15-19]. A method which proceeds from chemical formulae towards 
exact solutions without assuming transferability is the PCILO method which uses 
localized bonding and antibonding orbitals as a basis for a perturbative expansion 
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equivalent to a CI treatment [10, 20]. A discussion of excited states of composite 
molecules in relation to excited states of separate fragments became possible 
through the MIM approach of Longuet-Higgins and Murrell [21], whereas a 
generalization of the MIM method has been presented by v. Niessen [22]. Other 
schemes are especially designed for the interpretation of complex wave functions 
either by projection [6] or by decomposition of the molecular energy into local 
contributions [14, 23-26]. Perturbational methods have been applied mainly to 
study intermolecular interaction energies [27-30] and to the treatment of con- 
forrnational problems [11, 31-33]. Recently fragment orbitals have been used for 
a perturbational analysis of molecular orbitals and energetics of composite 
systems [34]. Donor-acceptor interactions were discussed by means of self- 
consistent linear combinations of molecular orbitals [35], whereas linear com- 
binations of bond orbitals were used to interpret "through-bond" interactions 
[36]. 

The present paper is concerned with the development of a semiempirical SCF MO 
method based on linear combinations of localized fragment orbitals (LCFO) and 
especially designed to compute the changes in orbital energies and wave functions 
which occur if two or more small systems or fragments are combined to form a 
new larger system. Thus we may consider the formal process 

A-X + B-Y ----* A-U-B, 

where A and B are those parts of the fragments which remain essentially un- 
disturbed (e.g. cores or substituents) and X and Y are those parts which interact 
to yield the system U. As an example we may consider the combination of the 
systems ofpropene (X) and formaldehyde (Y) to yield the ~ system ofacrolein (U), 
with A being the methyl group and B the oxygen lone pair: 

CH3--C=C-a C = O  ~ C H 3 - - C ~ C - - C ~ O  
6 6 

As another example we consider the combination of two CH 4 molecules to form 
ethane: 

H H H H 

)c-n+ H-d 9H--  )c-d ';'H 
H " I  \ H " I  \ 

H H H H 

Here we may take either the two CH-bonds as X and Y to form the CC bond U, 
A and B being the CH3 groups, or else the whole ethane molecule may be taken as 
the combined system U. In the present paper we give an outline of the theory for 
both the combination of ~ and cr systems, with an application of the equations 
for rc systems to the acrolein molecule. The detailed discussion of o- systems will 
be given in a subsequent paper [37]. 

The main application of this method of linear combination of fragment orbitals 
(LCFO) will be the interpretation of PE spectra of complex molecules on the basis 
of correlation diagrams which relate the orbital energies of fragments to those of the 
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system under investigation. Correlation diagrams of this kind have proved very 
valuable in empirical assignments of PE spectra [38]. The method is therefore 
formulated in a way which allows for the systematic estimation of the inductive 
perturbation of one fragment by another such that it becomes possible to include 
in the calculation experimental values of ionization potentials and electron 
affinities of the fragments in a way comparable to that in which experimental data 
are included in the discussion of excited states within the MIM approach [21]. 
Furthermore, within the framework of the ZDO integral scheme [42] several 
levels of approximations are discussed, ranging from the complete LCFO-MO- 
SCF method, which of course is connected to the usual LCAO-MO-SCF method 
simply by an unitary transformation, to the LCBO model in the HMO approxi- 
mation [39, 40]. It is this possibility of introducing approximations and of 
including experimental data which justifies the derivation of the full SCF equations 
in the way described in the following section and which distinguishes the present 
approach from previous work on self-consistent LCMO methods [35]. 

2. The Method of Linear Combination of Fragment Orbitals 

2.1. The Generalized Product Approach 

A convenient starting point for the development of an MO method based on 
linear combinations of fragment orbitals is the theory of generalized product 
functions [-9]. We therefore write the wave function 

T(1 . . . .  N)=•r  . . . .  NA)OB(NA + 1 . . . .  N A + N , ) . . .  (2.1) 

as a generalized product of antisymmetrized wave functions On, ~B . . . .  of the 
fragments A, B , . . . ,  with d being an antisymmetrizer giving a fully anti- 
symmetrical N-electron function. Strong orthogonality [8] in the sense 

�9 R(1, i , j . . . )~S(1 ,  k, l . . . .  ) dz 1 =0 (Rr  S) (2.2) 

is assumed, which may be ensured by using orthogonal basis orbitals ~b~ : 

f q~(1)q~(1) d~l =~,j  (all a ,  s). (2.3) 

An effective Hamiltonian for the electrons of group R in the field of all other 
groups may be defined as 

NR NR 
R 5r ' .NR )=  ~ R - 1 . .  ~eff(l)-~-~ ~ N(i,j), (2.4) 

i=1  i , j = l  

where 

/~ff(i)=/~(i)-t- ~ ajS(i)=/~R(i)+ ~ [~//~S(i)+cffS(i)] (2.5) 
S(:CR) S(:r R) 
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with 
t~R(i) ----- --�89 V2(i) + ~F'R(i) (2.5a) 

and 

ffs(i) = j s ( i )  _ sCs(i) (2.Sb) 

is an effective one-electron operator for the group R electrons. ~R(i) is the operator 
of the potential energy due to the nuclei (or cores) of fragment R and i s ( i )  and 
sCs(i) are the Coulomb and exchange operators describing the effective field at 
point i due to the electrons of groups S. 

If the groups R and S are described by a one-determinant wave function 

~#R( 1 . . . .  NR) = IOR(1)~R(2) "'" I (2.6) 

of doubly occupied MO's 

OR(i) = ~, ark OR(i), (2.7) 

which are obtained from a set of SCF equations 

fRaR=~i aR (2.8) 

with F R = herr + GRR(pR), (2.9) 

the one-electron density matrix pR is simply the charge density-bond order matrix 
with elements 

( p R ) H = 2  ~ ai iR (Tij , (2.10) 
i(ooc) 

and the energy of group R is given by 

R R R H~ff=trheffe +�89 GRRp R, (2.11) 

while the total energy of the system is 

Eo = ~ IHRef f -  ~, tr(GRS + VS)pS]. (2.12) 
S(~R) 

According to Eq. (2.5) G Rs is essentially a generalization of the total electron 
interaction matrix of Roothaan [40] with elements 

RS R R S S 1 R S R S e S  ( G ) * J =  ~, [(q~,q~a I ~b~bL)-~(~b,~bL ] qSaq~r)]( )Kt, (2.13) 
K,L 

and the elements of heRff are  given by 

R R (heef)IJ=( h )IJ ~- Z ( V s - ~  GRS)IJ '  (2 .14)  
S(~R) 

2.2. ~-Systerns 
If AX and BY are two fragments with n x and n v 7r-electrons, and the interaction 
between the zc systems X and Y is small, the combined system may be described 
by a generalized product function Eq. (2.1), and from Eqs. (2.13) and (2.14) one 
obtains fbr the SCF matrix elements of the 72 group X in the field of BY: 
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X ( F ) i d  ~- ( hXf ) l J  ~- G XX(p X)I j  

Y XY Y = [ h X +  VA+GXA(poA)],s+EVB+GxB(P~)+ V +G (e0)] iJ  

+ GXX(pX)I s 

Y xY Y +G (Po)].+axx(ex-eox). (2.15) 

where F x and PoX are the SCF matrix and the one-electron density matrix re- 
spectively of the ~z system X in the isolated fragment AX, i.e. in the field of group 
A alone. If we use as basis functions qSrR(i) (R = X, Y, A and B) the MO's of  group R 
in the isolated fragment, i.e. just those MO's which diagonalize Fo ~ and which 
may therefore be called fragment orbitals (FO's), we have 

g _ {~r f~ ~b~r ~ 
(Po)KL -- for 4~ unocc. (2.16) 

In order that the strong orthogonality requirement Eq. (2.2) be fulfilled, the 
FO's qS~ and 4) s are assumed to be linear combinations of different sets of  
orthogonal AO's Z~ and Z s [9]. If furthermore the zero-differential overlap (ZDO) 
approximation [42] commonly used in semiempirical work is invoked, we have 

R S q~,qSs--_0 for R r  (2.17) 

as for R C S  the FO's qS~ and q5 s are localized in different fragments. From 
Eqs. (2.16) and (2.17) we have 

IRj = [ V" + GxR(PX)]~j = Vr s + Z 2(qbXq 5x (2.18) 
P (occ) 

and Eq. (2.15) becomes 

Z (px  x x x x x 

K,L 

__ s I x x)] (2.19) 

where e x is the I ' th  eigenvalue of Fo x (as only the eigenvalues of FoX are needed, 
they will be designated by e x, a subscript 0 is not needed). 

Equation (2.18) may be taken as a definition of the ~ inductive perturbation of 
group X due to the field of the fragment BY; the perturbations l~s are seen to be 
small, as the nuclear attraction terms V~j and the electron repulsion terms 
•v (oct) 2(~xcpx I @ @ )  are of the same magnitude but of opposite sign. Obviously, 
the ~ inductive effect can cause just a shift of the ~ levels of group X in fragment 
AX, if only the perturbations of the diagonal elements are non-zero, or generally 
a shift as well as a mixing of the ~ levels. 

For larger interactions the groups X and Y may be combined to form a new 
group U with n U =n  x+r/Y 7~ electrons. The SCF matrix of this group U has 
elements 

(FU)Ij=(hU)Ij+[VA+GUA(pA)+ B UB B UU U V +G (eo)]~s+G (e ) .  (2.20) 
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Taking into account the fact that 

/hX + V Y h XY \ 
h U -  _ 

. . . . .  (2.21) 

and that F U and pu may be written in the form 

/ F  v F u \ u '  u F U _  (x) ~Y) ~ u  fP(x ) ' ,  P(xY)~ 
- ~  . . . . .  F ~ - )  and r = t  . . . .  , - - ;u--"  (2.22) 

\ ', P(Y) J 

indicating that F~x ) consists of matrix elements between the orbitals ~b x localized 
in group X etc., one obtains by means of Eqs. (2.15) and (2.19). 

V + G  ( P o ) ' ] I j + G  (P(x)),J (F(x))iju _-(hUx))Ij+[VA+Gxg(eoA)+ B XB B Xx u 

XY U XU U U + G (P(Y))IJ + G (P(xY) -+" P(YX))IJ 

F ( / , , r  ~ x , x x x x =(FX),j  + ~ (e~x)_pX)KL x x ~bK~bL)_~_(~b,q~Kq~jq~L) ] 
K , L  

@ 2  U Y X X V V (P(y)-P)KL(~I~J  ](gK(OL) (2.23) 
K, L 

Substituting Eq. (2.18) for (FX)xs yields 

U __ X B (f f  (X))IJ -- 8I (~IJ "~ [I + I V ] l j  -}- 

1 x x - : ( ' ~ , ~ , , I  x x ~ , r  + 

Z U X (p(x)_Po)KL[(~x(Ox [ ~K(OL)X X 
K, L 

F, (P~)- p~),,~(r [ 4@D. 
K, L 

(2.24) 

Finally, 

U __ U 1 ( F ( x Y ) ) l j - - ( h ( x Y ) ) l J - 2  E u X X (P(xY))KL(~ 91 ~)K I (oY(OYLL)" 
K,L 

(2.25) 

Eqs. (2.24) and (2.25) may be taken as a justification of the LCMO model in 
the HMO approximation [39], for P(x)U _- poX and P~)=  PY, which is a reasonable 
starting point for the SCF calculations, makes all the electron interaction terms 
disappear. Within the framework of Koopmans' approximation [42] experimental 
ionization potential (IP) and electron affinities (EA) may be introduced by 

x fIPx(X) for 0Xocc. 
- e t  =~EAI(X ) for ,q~Xunocc. (2.26) 

Further simplifications may be obtained by truncating the basis set so that only 
the occupied or the occupied and the lowest unoccupied fragment orbitals 4~r are 
used. In the following section these approximations will be studied by means of a 
numerical example and by comparison with results from the more complete 
expressions in Eqs. (2.24) and (2.25). 
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To complete this subsection we will give the SCF matrix elements for group A 
(and B) after union of X and Y to form U: 

(FA') , j=  hA + lXs + I X + 11% + GAX(P(~)- px) , j  

~- GAY(P(~) - PY)Ij~- G A A ( p  A ' -  pA)I d 

= ( r  I x x 
K,L 

U Y A A 4~K4~L ) 
K, L 

A A A 4~4L)] (2.27) + ~, (pA'_p)KL[(q~,q~ J i A A 1 A A 

K,L 

2.3. a-Systems 

If two a systems A - X  and B-Y  are to be combined to form a new system A - U - B  
some additional problems arise, because the total number of electrons and nuclei 
may change. E.g. if two CH 4 molecules are to be combined to form CH3-CH3,  
the CC bond U with two electrons is formed from the two CH bonds X and Y 
with two electrons each. Due to this change in the number of electrons and nuclei 
a term - I  x appears in the expression for the matrix elements of group A and 
group B equivalent to Eq. (2.18), i.e. 

(FA)zj = (hA)is + [ V x + GAX(pX)],j + GAA(poA)Ij 

+ [ V B + GAB (B o  B) + V U + GAU(eoU)]  H + G A A ( p  A - -  pOA)Ij 

Z (P -eo 
K, L 

A A q~J q~L)] (2.28) 

In Eq. (2.28) it has been assumed that Eq. (2.16) holds also for pV, i.e. that the 
orbitals ~b U diagonalize F u given by 

U U 1 U U U U (FC)iy=(hU)ij+li)+li~ + ~, (PU)kl I-(~w~u / q ~ k q ~ l T i  Tj , )--~(~i q~k. I ~j #~Z )] (2.29) 
k,l 

In the case of the ethane molecule the two sp 3 hybrid AO's Z x and Z~ may be used 
to form the basis orbitals 

q~U 1 x v , (2.30) =~(z.-z~) 
which in this case already diagonalize F u for reasons of symmetry, so that qS~ = q~. 

If there is an interaction between all parts of the molecule, the use of a generalized 
product function may no longer be justified. As an example we take again the 
ethane molecule, including the through-space interaction between the two CH 3 
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groups. In this case, the SCF-matrix and the density matrix of the whole inter- 
acting system AUB may be written similarly as in Eq. (2.22) in the form 

{ F ( A )  ' F(AU) Jl I F(AB) ~ 
. . . . . . . . . .  ~ . . . .  | 

F = I  :F(u ) 'F(vB) r 
with 

(u)', P(AU) ( 

and P =  ', P(u) cuB) (2. i 
- - i  . . . . . . . . . . .  

i 
i 
t t ~ (B)  / 

(F(A)),s = l~is + V~ + V~s + GAA(p(A))Ij + GAB(P(m),S + GAU(P(u))]s 

+ G(P(Au) + P(UA))IJ + G(P(AB) + P(BA))IJ -}- G(P(uB) + PIBv))H 
= ( F A ) I j + G A A ( P ( A ) _ _  A AB B AU U P )xJ + G (P(m- Po )IJ + G (P(u)- Po )I J, 

(2.32) 

where we used Eq. (2.28) as well as the fact, that G(P(Rs)+P(sR))Ii=O for all 
values of I and i .  Substituting Eq. (2.28) into Eq. (2.32) yields 

(F(A))IJ = 8A (~IJ -}- I~ -~- IIUj --  l~j -}- 2 ( P ( A ) -  POA)KL [-(~bAq~j A I ~ )  
K,L 

I /~A, .AA A A 

B A A U A A + Z (P(B)--Po)KL((~,~OJ [~b~b~)+ Z (P(u)--Po)KL(r ]q~bu) �9 
K, L K, L 

(2.33) 

Finally 

(F<Au))Ij=(h(Au))Ij_ �89 ~ A A U U (P(Au))KL ( ~3I ~)K ] ~) J ~) L)" 
K,L 

The rest of the paper will be concerned with ~ systems only. The formulae for a 
systems are given here for the sake of completeness. They will be discussed in 
more detail and applied to a variety of molecular systems in a forthcoming paper 
of this series [373. 

3. An Example: Acrolein 

As an example the application of the method of linear combinations of fragment 
orbitals to the ~ systems of the acrolein molecule is given in some detail. As 
localized group orbitals q~R of the fragments AX and Y, where A and X refer to 
the lone-pair and the 7c system of formaldehyde and Y to the rc system of ethylene, 
we use the ~ MO's ~co, 7rco, ~Zcc, rrcc and the oxygen lone-pair orbital n o. These 
orbitals ~b/R are expressed in terms of AO's )~ by means of the relation 

(q~ . . . . .  ~ R , . . . )  =(zA . . . .  , ZL ' "  .)C (3.1) 
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where the matrix C of the LCAO coefficients G1 contains non-zero blocks only 
along the diagonal, so that in our example 

c - /  i C(x, . (3.2) 

\o . . . . .  : C(y? 
By means of this matrix, the one-electron integrals (hz).~ over AO's Z. are trans- 
formed into integrals (h)~j over FO's qS~ according to 

h= C*hzC, (3.3) 

where due to the structure of C the blocks belonging to different groups of the 
fragments may be transformed separately, i.e. 

t " *  /4(RS) [ '~ (3.4) h ( R s ) :  ~ ( R ) " z  ~(S)'  

The two-electrons integrals over FO's are obtained by means of the relation 

~= ~ta/., (3.5) 

being a matrix of dimension n x n(n + 1)/2 with elements 

TII, Id ~-- cttI c# j .  (3.6) 

Columns H with I referring to an FO localized in R and J to one localized in 
S vanish, so that Tcan  be reduced to an n x m matrix Twith rn = 52R nR(nR + 1)/2 
of the form 

\0 iT(y) / 
leading to a matrix 

/F(AA) F(AX) F(AY)~ 
r =  r~gr= l F(XA ) C(xx)r(xy)] (3.8) 

\C(yA) ff(Vx) r(yy) / 

with 

F(SR ) = TiS)Y(SR) T(R) * * t =(T(R)g(sR)T(s))- * - -  F ( R S )  (3.9) 

t because of g(RS)=g(SR), SO that again each block may be transformed separately. 
It follows that once the integrals for the separate fragments are known, only 
interaction integrals, i.e. the blocks h(Rs) and/'(RS) with R # S have to be calculated. 
In the case of the two-electron integrals of the present example instead of the 
15 x 15 matr ix/~ only the 3 x 3 block/'(XY) and two 1 x 3 blocks F(AX) and r(Ay) 
are needed. 
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The following results were obtained for geometries with rco = 0.1241, rc= c = 0.1375 
and re_ c = 0.1425 nm and 120 ~ for all angles by using standard parameters and 
integral values within the Pariser-Parr-Pople approximation [44]. The one- 
electron integrals over AO's Zu are calculated from 

(hx)uv=fiu ~ o r 0  ( / l#v) ,  (3.10) 

where the valence state ionization potentials U u are taken to be Uc = -9 .85  eV, 
U~ )= -18 .25  eV and U~)=  -24 .75  eV and the two-electron integrals 7u~ where 
calculated from the Mataga relation [45] using 7cc = 11.08 eV and 7oo = 14.52 eV 
for the n and the rc electrons. 

Results of a complete LCFO-MO calculation for acrolein are given in Table 1. 
It is seen that ~ and ~/2 are  essentially the rCco and Ucc FO's with a small admixture 
of the rC~o FO mainly to ~2, whereas the coefficient of ~z* c is small for both 
occupied MO's. The virtual MO's on the other hand are mixtures of nearly equal 

Table 1. Results of LCFO MO calculations for the ~ system of acrolein (energies 

in eV) 

LCFO coefficients al~ 

Eigenvalue 

4 Basis orbitals 
1.48 0.064 -0 .127  -0 .616  -0 .775  

- 1.51 0.039 0.198 0.752 -0 .627  

- 10.29 -0 .239  0.929 -0 .226  -0 .004  

- 13.37 0.953 0.286 -0 .059  0.079 

3 Basis orbitals 
- 0 . 3 9  -0 .016  0.228 0.974 - -  

- 10.34 -0 .284  0.933 -0 .223  

- 13.30 0.959 0.280 -0 .049  

amounts of the re* o and re* c FO's. Thus, as long as one is interested in the occupied 
MO's only, it may be sufficient to use the rCco, rCcc and ~*o FO's as basis orbitals 
for the LCFO-MO calculation, as is verified in the lower part of Table 1. 

Much more detailed information may be obtained by considering the orbital 
energies e, and occupation number 1"i1 given in Table 2 for different levels and 
different approximation of the LCFO calculations. It is seen that the CO group 
does not experience any ~ inductive perturbation from the CC group, due to the 
uniform charge distribution of  the latter which together with the Goeppert- 
Mayer and Sklar approximation [46] of Eq. (3.10) leads to an exact cancellation 
of all core-attraction and the corresponding electron-interaction terms. By the 
same arguments the lone-pair does not influence the CC group, whereas the rr 
inductive effect of the CO groups stabilizes both the rCcc and the ~*c orbitals by 
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equal amounts and also leads to a slight mixing of these MO's, as may be seen 
from the inductive perturbation matrix 

co ( -0 .470  -0.076~ 
I(cct = - 0.470,] (3.11) 

From Eq. (2.27) the change in the lone-pair energy F A due to the redistribution 
of the ~z electrons in the combined ~z system is calculated to amount to + 0.65 eV, 
corresponding to a destabilization of the n o orbital by this value. 

As mentioned before, the HMO approximation may be a fair approximation in 
the case of the LCMO or LCFO model, as all electron interaction terms in the 
Fock matrix elements Eqs. (2.24) and (2.25) are due only to the redistribution of 

electrons after combination of the fragments. In the case of unsaturated carbonyl 
compounds however, this redistribution is not negligible, so that individual 
matrix elements (Foxy))1 s may differ considerably in the HMO and SCF approxi- 
mations, as is particularly true for the interaction element between 7Ccc and ~Z~o 
(see below). If only occupied FO's are taken into account as in the LCBO model, 
no charge redistribution can occur and HMO- and SCF-approximations become 
identical. Orbital energies of LCFO calculations without and with inclusions of 
electron interaction are given in columns III and IV of Table 2. 

From the z electron redistribution in unsaturated carbonyl compounds together 
with the contribution of the ~Z~o FO to the occupied MO's it is to be expected 
that the LCBO model, which has been extremely successful with the interpretation 
of the PE spectra of hydrocarbons [46], is not applicable to carbonyl compounds 
[47]. This is confirmed by the data in Table 2: whereas from the LCFO results 
in column IV it is seen that due to the conjugative ~ interaction 0z (Z~cc) is stabilized 
and the difference A e =  e 2 - ~ 1  is reduced with respect to the values of the isolated 
fragments, the opposite, i.e. a destabilization of 02 and an increase of AE, is 
predicted by the LCBO model. 

Finally, the results obtained for crotonaldehyde, 2,4-hexadienal and 2,4,6-octa- 
trienal by using experimental values for the fragment IP's and EA's within the 

i 

c H~_(OH=C HI~.CH= 0 

CH~- (C H=C H)3- CH=O 

10 12 14 16 18 (eV) 

Fig. 1. Crotonaldehyde, 2,4-hexadienal and 
2,4,6-octatrienal: z MO energies (solid bars) 
and n o MO energies (broken bars) as cal- 
culated by the LCFO MO method based on 
experimental IP's and EA's of acetaldehyde 
as well as lP's of propene, pentadiene and 
heptatriene together with a schematic repre- 
sentation of the PE spectra [48] 
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LCFO approach with truncated basis are shown in Fig. 1 together with the experi- 
mental PE spectra [48]. As the present approach is restricted to the 7c electrons, 
only the n inductive effect can be calculated. A a inductive effect, which may be 
appreciable particularly for the carbonyl group, has therefore to be taken into 
account by choosing the experimental values for the fragment IP's judiciously. The 
results of Fig. 2 are based on the choice IP(nco ) = + 13.5 eV, IP(no)= + 10.26 eV 
from the PE spectrum of acetaldehyde [-49] and IP(ncc) values from the PE spectra 
of propene, 1,3-butadiene and 1,3,5-heptatriene [40]. As the results are not very 
sensitive to the value of EA(n~o ), the value EA(n*o)= - 1.5 eV obtained from the 
half-wave potential of formaldehyde [50] was chosen. This choice of data is justi- 
fied by the very good agreement between calculated orbital energies and those 
obtained from the experimental PE spectrum by means of Koopmans' approxima- 
tion, as may be seen from Fig. 1. A further justification based on a similar LCFO 
calculation which includes all valence-electrons so that the n inductive as well as 
the a inductive effect can be calculated will be given in a forthcoming paper. 

4. Discussion 

The LCFO SCF method described in the present paper is quite closely related to 
previous work, in particular to the LCMO method of Flurry [35], the MIM 
method of v. Niessen [22] and the group orbital method of Whangbo and Wolfe 
[33, 34]. If no approximations are introduced, all four methods reproduce the 
LCAO MO SCF results, i.e. they differ in the formulations of the SCF equations 
which allow for different approximations corresponding to the purpose for which 
each method was developed. Thus Flurry as well as v. Niessen confine the cal- 
culation to a few orbitals, leaving some orbitals or parts of  the system unchanged, 
and Wolfe et al, apply perturbation theory in order to analyze the results for 
composite systems in terms of its constituents, whereas we are mainly interested 
in using Koopmans' approximation [43] in order to introduce experimental 
ionization potentials and electron affinities of fragments into the calculation of the 
combined system. Thus the vital point in our formulation of the LCFO SCF 
equations is the explicit expression for the inductive perturbation, i.e. for the 
changes of the Fock matrix elements for one fragment in the field of another 
fragment, which we obtained from the generalized product approach [9]. 

As long as we use semi-empirical integral schemes based on the zero differential 
overlap approximation no orthogonality problems arise. If the method is to be 
extended to ab initio type calculations, projection techniques could be applied as 
in the work ofv. Niessen [22]. On the other hand, an orthogonalization procedure 
could be included without additional labour in the transfon~aation of the integrals 
from the AO basis to the FO basis, as long as the full transformation is carried 
out, i.e. if not only the interaction integrals, but also the integrals of the individual 
fragments are to be recalculated. 

Although we are not aiming at saving computer time, the calculation can profitably 
be simplified by truncating the basis of the FO's. Results for the acrolein molecule 
indicate that it will be quite sufficient to include the lowest unoccupied FO of 
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each fragment or even only just one unoccupied FO for the whole system, and 
that the results are not very sensitive to the actual value of the orbital energies of 
these unoccupied FO's. Thus, only very few values of electron affinities are needed, 
which could also be estimated or treated as parameters of the method if no 
experimental values were available. 

Furthermore, if experimental ionization potentials and electron affinities are used 
in calculating the diagonal elements of the Fock matrix, the results are nearly 
independent of the values chosen for heteroatom parameters like U(o =) [48]. Thus 
by an appropriate choice of the fragments the only variable parameters are the 
/~'s for the union of the fragments, similarly to the situation for the LCBO model 
of hydrocarbons [-39]. 

In conclusion we may say, that from a limited number of fragments as building 
blocks energies and wave functions of a large number of composite systems may 
be calculated in a very simple manner by computing interaction integrals over the 
occupied and the few unoccupied FO's and solving the truncated SCF problem. 

The orbital correlation diagrams obtained by this method may be very useful in 
discussing the electronic structure of complex molecules and in assigning the 
PE spectra. Thus the results of the present paper suggest that within the frame- 
work of the n approximation unsaturated carbonyl compounds should be described 
by an orbital correlation diagram shown schematically in Fig. 2. In contrast to 
hydrocarbons, where the LCBO model may be applied and the splitting of the 
occupied orbitals is a measure for the interaction of the fragment orbitals, the 
orbital splitting may be smaller for the interacting system than for the fragment 
orbitals in spite of considerable conjugative interaction between the C=C and 
C=O rc bond. 

F 

There are three reasons for the different behaviour of the carbonyl compounds 
and the hydrocarbons: 1) due to the difference in the C=C and C=O n bond 
energies, their interaction is a second-order effect if described by perturbation 
theory, whereas the interaction of two (degenerate) C=C bonds is a first-order 
effect; 2) the n* o orbital lies energetically lower than the n~c orbital, making 
second-order contributions more important, and 3) the interaction element FIj 
between the ncc and the n* o FO (which has the value F~.  = + 2.23 eV in the case 

(c) (d) (a) (b) 

m T~CC 

X \ 0 

I 
1 I 

I 

I 

~cc I 

"--C-'" . . . . . .  ~ ............ o 
x 

C=C C=C-C=O C=O 

Fig. 2. Schematic orbital correlation diagram for unsaturated 
carbonyl compounds; (a) and (d) isolated fragments, (b) including 
inductive perturbation and (c) including conjugative interaction 
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of acrolein) is considerably larger than the one between the n*c and the ncc FO 
(F~, = + 1.68 eV for butadiene), whereas the opposite is true for the interaction 
elements between the occupied FO's. This is due to the unsymmetrical electron 
distribution in nco and nco,* which increases the one-electron and to an even larger 
extent also the two-electron contribution to the antibonding interaction element. 

In the case of the tropone molecule, similar results are obtained [-52], which 
indicate a non-negligible contribution of the n* o FO to the ground state electronic 
structure. These findings are at variance with the results of Schweig et al. [53] 
who from MINDO/2 calculations with conjugative interruptions [54] conclude 
that the inductive stabilization and consequently also the conjugative destabilization 
of the ncc level are much larger. But such differences are not unexpected since 
Schweig et al. did not use the n approximation but were working within an all- 
valence electron scheme, and since the magnitude of inductive and conjugative 
effects naturally depends on their definition which is quite arbitrary. 

The definition of the inductive perturbation based on the generalized product 
approximation appears to be consistent and physically meaningful. This will be 
demonstrated in forthcoming papers by applying the method to the interpretation 
of a wide range of carbonyl compounds including tropone and related compounds 
[52], to unsaturated ethers [-55] and to other compounds. 
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